موضوعات وبسایت : دانلود جزوه

انتگرال چیست؟

انتگرال چیست؟

نویسنده : معین | زمان انتشار : 23 دی 1399 ساعت 12:06

300px-Integral_example.svg.png

انتگرال معین تابعی را می‌توان به صورت مساحت علامت دار ناحیه ای محدود به نمودار آن تابع نشان داد.

در ریاضیات، انتگرال (به فرانسوی: Integral)، روشی برای اختصاص اعداد به توابع است، به گونه‌ای که جابجایی، مساحت، حجم و دیگر مفاهیم برآمده از ترکیب داده‌های بی‌نهایت کوچک را به وسیله آن بتوان توصیف کرد. انتگرال‌گیری یکی از دو عمل مهم در حساب دیفرانسیل و انتگرال است، که عمل دیگر آن (عمل معکوس) دیفرانسیل‌گیری یا همان مشتق‌گیری است. برای تابع داده شده‌ای چون f از متغیر حقیقی x و بازه [a,b]{\displaystyle [a,b]}9c4b788fc5c637e26ee98b45f89a5c08c85f7935 از خط حقیقی، انتگرال معین:

∫abf(x)dx{\displaystyle \int _{a}^{b}f(x)\,dx}ac02adeed584466d53dee65f3228ad66939eb58b

به‌طور صوری به عنوان مساحت علامت‌دار ناحیه ای از صفحه xy که به نمودار f، محور x و خطوط عمودی x=a و x=b محدود شده‌است. نواحی بالای محور x به مساحت کل افزوده و نواحی پایین محور x از ان می‌کاهند.

عملیات انتگرال‌گیری، در حد یک مقدار ثابت (یعنی بدون در نظر گرفتن یک مقدار ثابت)، معکوس عملیات دیفرانسیل‌گیری است. بدین منظور، اصطلاح انتگرال را می‌توان به معنای پاد-مشتق نیز به کار برد، یعنی تابعی چون F که مشتقش تابع داده شده‌ی f باشد. در این حالت به انتگرال f، انتگرال نامعین گفته شده و به صورت زیر نوشته می‌شود:

F(x)=∫f(x)dx.{\displaystyle F(x)=\int f(x)\,dx.}d18cda981a68bc3565b1a72eb15c618824f6a045

انتگرال‌هایی که در این مقاله مورد بحث قرار می‌گیرند از نوع انتگرال معین اند. قضیه اساسی حساب، دیفرانسیل‌گیری را به انتگرال معین ارتباط می‌دهد: اگر f یک تابع پیوسته حقیقی مقدار روی بازهٔ [a,b]{\displaystyle [a,b]}9c4b788fc5c637e26ee98b45f89a5c08c85f7935 باشد، آنگاه زمانی که پاد مشتق f یعنی F، معلوم باشد، انتگرال f روی آن بازه مساوی است با:

∫abf(x)dx=[F(x)]ab=F(b)−F(a).{\displaystyle \int _{a}^{b}\,f(x)dx=\left[F(x)\right]_{a}^{b}=F(b)-F(a)\,.}a433aea7c0c8b43e6387aa906e7d855c1cb1f207

اصول انتگرال‌گیری به‌طور مستقل توسط اسحاق نیوتون و گوتفرید ویلهلم لایبنیز در اواخر قرن هفدهم میلادی قاعده‌بندی شد، آن‌ها انتگرال را به صورت جمع مستطیل‌هایی با عرض‌های بی‌نهایت کوچک می‌دیدند. برنارد ریمان تعریف دقیقی از انتگرال ارائه نمود. این تعریف بر اساس فرایند حد گیری است که مساحت زیر نمودار یک خم را با شکستن آن ناحیه به قطعات نازک عمودی تخمین می‌زند. با شروع قرن نوزدهم میلادی، مفاهیم پیچیده‌تری از انتگرال ظهور پیدا کرد که در آن نوع تابع به علاوه دامنه انتگرال‌گیری تعمیم یافت. انتگرال خطی برای توابع دو یا چند متغیره تعریف شده‌است و بازه انتگرال‌گیری [a,b]{\displaystyle [a,b]}9c4b788fc5c637e26ee98b45f89a5c08c85f7935 در آن با خمی که دو نقطه ابتدا و انتهای انتگرال‌گیری را به هم متصل می‌کند جایگزین شده‌است. در انتگرال سطح (یا انتگرال رویه ای)، خم با یک رویه در فضای سه بعدی جایگزین می‌شود.

تاریخچه[ویرایش]

قبل از حسابان[ویرایش]

اولین تکنیک نظام مندی که قادر به تعیین انتگرال، روش افنا بود که توسط ستاره‌شناس یونان باستان، اودوکسوس (حدود ۳۷۰ قبل از میلاد) معرفی شد. در این روش مساحت‌ها و حجم‌ها به تعداد نامتناهی تکه که مساحت یا حجم هر کدام از آن تکه‌ها معلوم بود تقسیم‌بندی می‌شدند. ارشمیدس این روش را ارتقاء داده و از آن در قرن سوم قبل از میلاد استفاده کرد تا مساحت‌های سهمی و دایره را به کمک آن بدست آورد.

روش مشابهی به‌طور مستقل در حدود قرن سوم بعد از میلاد توسط میو هوی در چین بدست آمد، او از این روش برای بدست آوردن مساحت دایره استفاده کرد. این روش بعدها در قرن پنجم میلادی توسط ریاضیدانان پدر و پسر چینی یعنی زو چونگژی و زو گنگ برای بدست آوردن حجم یک کره (Shea 2007; Katz 2004، صص. ۱۲۵–۱۲۶) مورد استفاده قرار گرفت.

در خاورمیانه، حسن ابن الهیثم (نام لاتین شده او Alhazen است) (۹۶۵–۱۰۴۰ میلادی) فرمولی برای جمع توان‌های چهارم بدست آورد. او از این فرمول برای بدست آوردن چیزی استفاده کرد که اکنون می‌دانیم انتگرال آن تابع است، وی از آن برای محاسبه حجم یک سهمی گون استفاده نمود.[۱]

تا قرن هفدهم میلادی پیشرفت مهمی در حساب انتگرال صورت نگرفت. در این زمان بود که روش کاوالیری یعنی روش تقسیم ناپذیرها، و همچنین کارهای فرما، بنیانگذاری حساب مدرن را کلید زدند. کاوالیری در فرمول‌های مربع کاوالیری خود، انتگرالهای xn{\displaystyle x^{n}}150d38e238991bc4d0689ffc9d2a852547d2658d را تا درجه n=۹ محاسبه کرد. قدم‌های بعدی در اوایل قرن هفدهم میلادی توسط بارو و توریسلی برداشته شد، آن‌ها اولین نشانه‌های ارتباط انتگرال و دیفرانسیل را ارائه نمودند. بارو اولین اثبات قضیه اساسی حساب را ارائه داد. والیس روش کاوالیری را برای محاسبه انتگرال‌های توان‌های عمومی x تعمیم داد، به گونه ای که شامل توان‌های منفی و حتی توان‌های کسری نیز می‌شد.

نیوتون و لایبنیز[ویرایش]

در قرن هفدهم میلادی، با اکتشافات مستقل قضیه اساسی حساب توسط لایبنیز و نیوتون، پیشرفت عمده ای در انتگرال‌گیری بوجود آمد. لایبنیز کار خود در ارتباط با حساب را قبل از نیوتون منتشر کرد. این قضیه ارتباطی بین انتگرال‌گیری و دیفرانسیل‌گیری را اثبات می‌کند. این ارتباط، از ترکیب سادگی نسبی دیفرانسیل‌گیری استفاده کرده و از آن در جهت فرایند انتگرال‌گیری استفاده می‌کند. بخصوص، قضیه بنیادی حساب امکان حل دسته وسیع تری از مسائل را می‌دهد. چارچوب ریاضیاتی جامعی که هردوی لایبنیز و نیوتون بوجود آوردند از نظر اهمیت در یک سطح هستند. با استفاده از مفهوم حساب بی‌نهایت کوچک‌ها، امکان تحلیل دقیق توابع با دامنه‌های پیوسته فراهم گشت. این چارچوب در نهایت منجر به ایجاد حسابان شد، ضمن این که نمناد انتگرال‌گیری در حسابان به‌طور مستقیم از کارهای لایبنیز برگرفته شده‌است.

صوری سازی[ویرایش]

درحالی که نیوتون و لایبنیز رهیافت نظام مندی به انتگرال‌گیری ارائه نمودند، کارهای آن‌ها فاقد درجه ای از استواری و استحکام ریاضیاتی بود. بیشاپ برکلی، حمله بیاد ماندنی به روش افزایش ناپدید شونده نیوتون کرد و آن را «ارواح کمیت‌های مرده» نامید. با توسعه حد، حسابان مجهز به بنیان مستحکمی گشت. ابتدا انتگرال‌گیری با کمک حدود توسط ریمان از نظر ریاضیاتی مستحکم شد. گرچه که تمام توابع تکه به تکه پیوسته در بازه ای کراندار ریمان-انتگرال پذیرند، اما مثلاً به‌طور خاص در بستر آنالیز فوریه با توابعی سروکار داریم که بر اساس روش ریمانی انتگرال پذیر نیستند، لذا به مرور با توسعه تعریف انتگرال‌گیری، مثل فرمول انتگرال‌گیری لبگ، توابع بیشتری در دایره توابع انتگرال پذیر قرار گرفتند و بدین طریق نظریه اندازه (زیر شاخه ای از آنالیز حقیقی) شکل گرفت. تعاریف دیگر انتگرال که هردو رهیافت ریمانی و لبگ را بسط می‌دهند نیز پیشنهاد شده‌اند. این رهیافت‌ها بر اساس سیستم اعداد حقیقی بوده و امروزه رایج اند، اما رهیافت‌های دیگری نیز وجود دارند که بر اساس دستگاه اعداد فراحقیقی بنیان نهاده شده‌اند و از بخش استاندارد (مربوط به آنالیز غیر استاندارد) جمع بی‌نهایت ریمانی برای تعریف انتگرال استفاده می‌کنند.

مهم‌ترین تعاریف در انتگرال[ویرایش]

200px-Integral_Riemann_sum.png

مثالی از انتگرال با تقسیمات ناهمسان (بزرگترین قسمت با رنگ قرمز مشخص شده‌است)

200px-Riemann_sum_convergence.png

از مهم‌ترین تعاریف در انتگرال می‌توان از انتگرال ریمان و انتگرال لِبِگ است. انتگرال ریمان به‌وسیله برنهارد ریمان در سال ۱۸۵۴ ارائه شد که تعریف دقیقی را از انتگرال ارائه می‌داد تعریف دیگر را هانری لبگ ارائه داد که طبق این تعریف شرایط تعویض‌پذیری حد و انتگرال با شرط مساوی ماندن عبارت، ارائه می‌کرد. از دیگر تعاریف ارائه شده در زمینه انتگرال می‌توان به انتگرال ریمان–استیلتیس اشاره کرد. پس به‌طور خلاصه سه تعریف زیر از مهم‌ترین تعاریف انتگرال می‌باشند:

محاسبه انتگرال[ویرایش]

220px-Integral_approximations.svg.png

تخمین انتگرال

x{\displaystyle {\sqrt {x}}}d62b24be305beff66cba9bfbcc01a362ba390f44

از ۰ تا 1

اکثر روش‌های اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شده‌است که بر طبق آن داریم:

  1. f تابعی در بازه (a,b) در نظر می‌گیریم.
  2. پاد مشتق f را پیدا می‌کنیم که تابعی است مانند f.
  3. قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می‌گیریم؛ بنابراین مقدار انتگرال ما برابر خواهد بود.

به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه می‌دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم. معمولاً پیدا کردن پاد مشتق تابع f کار ساده‌ای نیست و نیاز به استفاده از تکنیک‌های انتگرال‌گیری دارد این تکنیک‌ها عبارت‌اند از:

روش‌هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می‌رود همچنین می‌توان بعضی از انتگرال‌ها با ترفندهایی حل کرد برای مثال می‌توانید به انتگرال گاوسی مراجعه کنید.

تقریب انتگرال‌های معین[ویرایش]

محاسبه سطح زیر نمودار به‌وسیله مستطیل‌هایی زیر نمودار. هر چه قدر عرض مستطیل‌ها کوچک می‌شوند مقدار دقیق تری از مقدار انتگرال بدست می‌آید.

انتگرال‌های معین ممکن است با استفاده از روش‌های انتگرال‌گیری عددی، تخمین زده شوند. یکی از عمومی‌ترین روش‌ها، روش مستطیلی نامیده می‌شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آن‌ها نشان دهنده مقدار تقریبی انتگرال است. از دیگر روش‌هایی معروف برای تخمین مقدار انتگرال روش سیمپسون و روش ذوزنقه‌ای است. اگر چه روش‌های عددی مقدار دقیق انتگرال را به ما نمی‌دهند ولی در بعضی از مواقع که انتگرال تابعی قابل حل نیست یا حل آن مشکل است کمک زیادی به ما می‌کند.

300px-Riemann_Integration_and_Darboux_Upper_Sums.gif

جمع بالایی داربوسک برای تابع

y=x2{\displaystyle y=x^{2}}ad1108c4c9ee8ac7de90b77f9bd27415b13b6bf1300px-Riemann_Integration_and_Darboux_Lower_Sums.gif

جمع پایینی داربوسک برای تابع

y=x2{\displaystyle y=x^{2}}ad1108c4c9ee8ac7de90b77f9bd27415b13b6bf1

کاربرد[ویرایش]

انتگرال‌ها در واقع مساحت محصور در زیر نمودار هستند و در فیزیک می‌توان برای کاربردهای زیادی تعریف کرد مانند کار انجام شده در یک فر آیند ترمودینامیکی از انتگرال رابطه فشار و حجم به دست می‌آید. اما به‌طور کلی می‌توان آن را تغییرات کمیت حاصل ضرب افقی و عمودی نمودار نامید مثلاً: در یک رابطه کمیت‌ها را تحلیل ابعادی می‌کنیم مثلاً رابطه سرعت و زمان را به صورت زیر نوشته می‌شود:

v=[L]/[T]t=[T]{\displaystyle v=[L]/[T]t=[T]\!}09c65bf58041e686903b7232ee14038b36e1e432

سپس دو تحلیل را در هم ضرب می‌کنیم:

[L]{\displaystyle [L]\!}e16b98e88021dffc1f5f41aa1f80ee9879aa991d

پس مساحت محصور در زیر نمودار برابر با تغییرات طول (جابجایی) است.

پانویس[ویرایش]

  1. Katz, V.J. 1995. "Ideas of Calculus in Islam and India." Mathematics Magazine (Mathematical Association of America), 68(3):163–174.

کتابشناسی[ویرایش]

پیوند به بیرون[ویرایش]

کتاب‌های برخط[ویرایش]

آیا این مطلب برای شما مفید بود؟




ارسال نظر

نام


ایمیل


نظر